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The so-called saymmetrlc mechanics of continuous media Is a generalization of 
the ordinary continuum mechanics of continuous media for the case ln which 
the stress tensor becomes asymmetric (uik#us3. 

The expression $5 eikl = 'la (a{, - $) efkl defines the resultant of the 
moments of the forces which act on an erement of the medium. Therefore, this 
resultant may be balanced only by the moments of couples. In a series of 
works tl and 2]the existence of volume-dlstrlbuted couples m stipulated 
by external effects, Is assumed. However, the case ln which LAe 
between particles of the medium Is of greatest interest [3 to 51, 

couples act 
The effect 

of one contiguous part of the medium on another Is then characterized not 
only by surface forces (stresses), but also by surface moments (micro-moments). 
This concept Is reflected In a series of works [5 to 81. 

Inltlally, asymmetric mechanics of continuous media was developed as a 
theory of elasticity, but recently lnvestlgatlons have appeared [9 to 111 ln 
which asvmmetrlc htiromechanlcs Is worked out. The need for these lnvestl- 
gatlons stems from-the desire to define more precisely the limits of validity 
of the classical hydromechanlcs of viscous media. Asymmetric hydromechanics 
may possibly explain a series of deviations of experimental data from the 
precilctlons of theory. It differs from ordinary hydromechanlcs by a more 
precise definition of the state of strees which Is characterized by an aay'm- 
metric stress tensor uik(u, #a,{) and atensorofthe surface micro-moments ulr. 

The state of deformation Is described by the deformation rate tensor e,', 
and by the micro-torsion and micro-bending rate tensor * . The rheologl- 
cal laws, I.e. the relation of ulr and pir with E;~ 3 r' are estab- 
lished. Additional coefficients which may be called the rota&&l viscosity 
coefficients appear in these relations. 

The equations of motion of the fluid In the velocity components and their 
general solution are constructed. Boundary conditions sufficient to solve 
the equations of motion are formulated. Fluid discharge from a Capillary, 
the motion of a sphere In the fluid and the viscosity of suspensions are 
considered. 

1. 'Ihr stat. of rtrerr. The state of stress of a continuous medium 

(whether fluid or solid) has been considered from the point of View Of asym- 

mertic theory in a series of works [5 to 83. It Is characterized by an asym- 

metric stress tensor oik and a micro-moment tensor pir (*), which are sub- 

*) Footnote on the following page. 

333 
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ject to the equations of the translational and rotational motions of an ele- 

ment of the medium (**) 

(1.1) 

Here p Is the density of the medium, f, and m, the density of the 

volume-distributed forces and moments, vI the velocity of the translational 

motion of an element of the medlum, d/dt the substantive derivative and 

_ the unit axial asymmetric tensor (the Levi-Clvita tensor). 

It Is easily seen that U,,md~mn E U,-,&2imnr where o,,~- is the antlsym- 

metric part of the btress tensor. From (1.1) It follows that the asymmetry 

of the stress tensor is stlpu!ated by the micro-moments ulr and the volume- 

distributed moments m,. In classical hydromechanics ui L= 0 and ml = 0 ; 

therefore, the stress tensor Is symmetric.. 

2. lPhr dld.p~tlon funotlon. To obtain the generalized rheological laws 

we shall turn to consideration of the process of fluid deformation under lso- 

thermai conditions. 

In the asymmetric theory It Is necessary [5] to take into consideration 

the ‘inherent” angular characteristics n’ of the particles of the medium 

which differ from the rotational velocity of a portion of the medium as a 

whole (I.e. 1 trot + v I). In other words, the state of a flowing fluid 

Is determined not only by the field of the translational velocities v ,but 

also by the field of the angular velocities Q’ (***) 

In this case the expression for the work of deformation of a unit volume 

of the medium (whether fluid or solid) in unit time has the form (****) 

(2.1) 
Here and In what follows the Got denotes differentiation with respect to 

time. The generalized deformation rates coU and r;, are related to the 

velocity field v, and to the angular velocity field n’, in the follow’ing 

manner: Ihi 

e’ik = z - s2’l elki , 
k 

“1 By micro-moments are meant the density of couples, along with the den- 
sity or forces (the stresses), which act on a section, conceptually drawn in 
the medium, which Is In a stressed state. The meaning of ul* is seen from 
the relation u! kvk= M1 , where M, Is the density of surface moments on an 
elementary area inside a body with normal v~. The diagonal components of 
plr characterize the torsional moments, the nondiagonal components the bend- 
ing moments. 

**) In the papers [9 to 111 a dynamic term appears in the right-hand side 
of the second equation of (1.1). However, taking it into account does not 
affect the basic relations obtained below. 

***) This Is the conventional terminology. By the angular velocity n’ 
there Is meant a quantity averaged over a physically small volume, which 
characterizes an Internal rotational motion in it differing from Its motion 
as a whole. 

****) Cf. the expression which follows Immediately after relation (8) in[5]. 
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In the case of a fluid the quantity bL/at may be represented in the form 

of a sum of two terms: the rate of Increase of free energy d(pF)/cit stl- 

pulated by the elastic deformations and the rate of heat transfer Y stlpu- 
lated by the enrgy dissipation processes, I.e. 

C?L 
qPF)+Y at= dt (2.3) 

If It Is assumed that the accumulation of elastic deformation Is stlpu- 

lated only by the bulk compresslblllty of the fluid, then 

$ (fm = - pe’a (2.4) 

where p is the thermodynamic pressure. Substituting (2.4) into (2.3) and 

taking (2.1) into consideration, we obtain 

y = (uik + p&k) E’ik + pfkffk (2.5) 

Expanding the dissipation function in a series In powers of the components 

of the deformation rates E',~ and F.1, and retaining only terms not higher 

than second order, we have 

The matrices of the coefficients f&,,, &lm, Cfkl,,, and Dtkl,,, are 

determined by the characteristics of the fluid. We shall restrict our con- 

sideration to Isotropic fluids only, whose characteristics do not vary with 

specular reflection (I.e. the fluid Is nongyrotroplc); then 

'/,q' = l/&',s'h..k -!- l/s@ + y) S'ika'kt + '1s (CL - y) E’fke-fk + (2.7) 

+ qfnn r’kk+ rr’i kr’kf + 8 r’fkr’ik 

The coefficients of this quadratic, essentially posltlve formuia, as shown 

In [12],obey the following Inequalities 

p>O, 3h+2p>O, p-Y>>, e+x>O, 8--->Ov Y<O 

3. The rhrolo&loal lawr. To find the rheologlcal laws, we shall apply 

the theory of Euler concerning homogeneous functions to Expression (2.7) 

E'ik + r*ik 
"fk "fk 

(3.1) 

Identifying this expression with (2.5), we obtain the relations 

%k = - p&k + t ($&) ‘.tk , (3.2) 

Substituting Expression (2.7) for Y In them, we obtain 

These relations, as Is easily seen, have the form of a generalized Newton- 

Navler-Stokes hypothesis. The coefficients A and u are the coefflclents 
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of the bulk and shear viscosity. The coefficients n , T and e may be 

called the coefficients of rotational viscosity ("). 

4. Thr barSo rqurtlonr. The equations of motion In the velocity compo- 

nents can be obtained by replacing the stresses IJ,~ and the micro-moments 

Q,~ In the equations of motion In the form (1.1) with the deformation rates 

s*lk and r*lk according to the rheologlcal laws (3.3) and (3.4). The latter, 

In turn, are replaced with the velocities v, and the angular velocities 

n', > In accordance with (2.2). 

Neglecting the dependence of the coefficients of viscosity (L,~,q,e,y) 

on the coordinates, we obtain 
(4.1) 

dv 
Vz- 

=pf- grad p + (h + 2p)grad div v - (p - y)] rot rotv - 2y rot St’ 

(q -k Z -k 0) grad div 52’ - 8 rot rot 52’ + 2ylll’ - y rot v + pm = 0. (4.2) 

This system of two vector equations contains eight unknown functions - 

three components of velocity v , three components of the "Inherent" angular 
velocity n*, the pressure p and the density p . To determine these 

eight functions we must have two additional equations along with the six 

equations of motion In the form, let us say, of (4.1) and (4.2). They may 
be obtained from the law of conservation of mass (the continuity equation) 

and the law of conservation of energy. The contlnulty equation is not rela- 

ted to the state of stress in the fluid and, therefore, has the same form as 

In ordinary hydromechanics 

dp ! dt + div (pv) = 0 14.3) 

The heat transfer equation does depend on the state of stress and, there- 

fore, must be modified. If the concept of specific internal energy e , 
which Is the Internal energy unit mass (**), be Introduced, its increment 

~111 then be determined: (1) by theflowof energy which Is stipulated by 

the mass transfer across the boundaries of the volume, (2) by the transfer 

of heat due to heat conduction, and (3) by the elementary work of the volume 

force and the volume moments, the surface forces and the surface moment (***) 

The first two ltems do not require modlflcatlon, but the third, the work of 

deformation of a unit volume of the fluid, must be calculated according to 

Formula (2.1). We finally obtain 

p ds / dt = div (x grad T) + q (akefk’ + pfkr“fk) (4.4) 

") They are numerically equal to the moment taken over a unit surface of a 
portion of the medium, when the latter Is rotating with respect to Its nelgh- 
bors so that the gradient of angular velocity 1s equal to unity. The coef- 
ficient y characterizes the degree of ncoupllng" of a particle with its 
environment. If Y'O, then the particle moves about freely relative to 
the surrounding medium. If v-m, then the particle Is rotated together 
with the part of the medium adjacent to It. 

**) This can be done neglecting the energy of interaction of the parts of 
the fluid with each other. 

l **) Other sources of variation of c will not be considered. 
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Here H Is the coefficient of heat conduction, 4 the thermal equivalent 

of work and 7 the temperature. To complete the equations we must still 

add to (4.4) the equation of state 

P = P (PY T) (4.5) 

5. The general rolutlon of the equrtlonrr of motion for the 0100 ol 

“orrrplng” motlona, Because of the nonlinearity of the expression for the 

acceleration 
dvldt = av /at + (vv)v 

the system (4.1) and (4.2) turns out to be very complicated. However, if we 

restrict our consideration to steady 'creeping" motions (the Stokes appro- 

ximation) In the absence of volume distributed forces (*) and moments (k=O, 

ml= O), the problem of integrating the equations of motion then reduces to 

the solution of well-known equations of second order. 

In fact, applying the operation of div to (4.1) and (4.2), we obtain 

At!=& k,*Acp-q=O (5.1) 
Here ("*) 

g = (h + 2~) div v - p, cp = div $2’ 

k,2 = - I/* (q + 8 + r) y-1 (5.2) 

Further, substituting (4.2) Into (4.1), we arrive at Equation 

grad g - 2p rot !A’ -t 8 (p - y) 7-l rot rot rot S = 0 (5.3) 
from which we easily find 

rot Q’ = Q’, + V2pV1 grad g (5.4) 

where a', satisfies Equation (***) 

ka rot rot Qsl + Q’, = 0, k,a = ‘/,O (p - y) p-‘y-l (5.5) 

Taking (5.4) Into consideration, we obtain from (4.1) a separate equation 

for 
- grad p + (h + 2~) grad div v - p rot rot v = 2yp (p - Y)-’ P’, (5.6) 

which may be regarded as Inhomogeneous. Its solution has the form 

v=v 
0 
-_B~-1P', (5.7) 

Here v" Is the solution which corresponds to the homogeneous equation 

- grad p + (h + 2~) grad div v” - p rot rot v” = 0 (5.8) 

i.e. to the Navler-Stokes equations of ordinary hydromechanlcs, snd-eu-'O, 

is the particular solution of (5.6) which Is easily found If (5.8) is con- 

sidered. 

We shall now find P'. Substituting the relations (5.5) into (5.4) and 

taking (5.8) into consideration, we arrive at Equation 

“1 Or If the volume forces have a potential. 

**) Here y # 0 . The case y= 0 requires special consideration. 

***) We note that the constants k, and ka have the dimension of a length. 
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rot Jz’ = - ka2 rot rot a*, + II2 rot rot v” (5.9) 
from which we find 

R’ = I/* rot v” - ktZ rot Q’, + grad ‘p* (5.10) 
to within grad cp* which for the Present is undetermined. Comparing the 

expression for div n’ found from (5.10) with Expression (5.2), we obtain 

cp*= k12rp to within an unessential harmonic function. Hence 

52’ = l/e rot v” - k,2 rot Q2’, + k,2 grad cp (5.11;) 

Thus, the general solution of the system of equations for the steady, slow 

flow of a fluid (4.1) and (4 2) Is given by the relations (5.7) and (5.11), 

i.e. It reduces to the solution of the well-hewn Navier-Stokes equations of 

ordinary hydromechanlcs (5.8) and of equations of the Helmholz type (5.1) 

and (5.5). 

We note that the latter can be written in the form of a single equation, 

Introducing a single vector Q’s In place of cp and 8’, (div P’, = 0) 

sz’, = - kz2 rot Q3,’ + k12 grad cp (5.12) 
which satisfies Equation 

k12 grad div Q’, - k,2 rot rot B’, - Qe2 = 0 (5.13) 

Then In place of (5.7) and (5.11) we have 

v =;,F - e#L-’ rot 51’,, 52’ = Q’, $ 112 rot v” (5.14) 

6. m~hr boundary oondltionr. In the asymmetric theory, as has already 

been noted, the state of the fluid Is characterized additionally by a field 

of angular velocities n’ . In connection with them three additional equa- 

tions of motion appear In the theory. It follows from this that the state 

of the fluid must be characterized by more complicated boundary conditions 

at the boundary (*). 

To solve the equations of motion (4.1) and (4.2) or, what is the same, 

(5.1), (5.5) and (5.8) six conditions are necessary. The field of transla- 

tional velocities can obviously be given at the boundary, just as In ordinary 

hydromechanlcs, In the form of the no-slip condition 

[v” -_8~-’ rot !Z21~ = V (V velocity of the boundary) (6.1) 

The second three conditions must obviously determine the field of angular 

velocities n* . In these conditions the mechanism of influence of the bound- 

ary on the field of angular velocities fl* should have Its reflection. Since 

this mechanism of onteraction Is far from clear, we shall then restrict. our- 

selves to the formulation of boundary conditions for the vector C’ in cer- 

tain Idealized cases. A limiting case can be a fluid and a solid surface 

which Interact so strongly that a particle of fluid does not turn over rela- 

*) Here is meant only the boundary between the fluid and a solid which is 
an impervious body for the fluid. 
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tive to the surface and, therefore, its angular velocity Is equal to the 

angular velocity of the surface 

Q'IS - l/s rot V (6.2) 

Another case can also be represented - the limit of weak Influence of the 

surface on the angular velocity of the fluid in which the particles turn 

over freely with respect to the surface. Then, obviously, the dynamic con- 

dition 
MiIS -pikvk\S=o (6.3) 

must be satisfied on the boundary in place of the kinematic condition (6.2), 

where AfiIS is the density of micro-moments on the surface and V~ is the 

vector of the normal to it. 

Between these extreme cases are found the cases of constrained, rotational 

slip of the fluid along the surface of the body. In this case it Is natural 

to assume the existence of friction, as a result of which micro-moments arise 

on the surface. We shall assume that the overfall of the angular velocities 

/&'k = Qt'k - l/s (rot v), I on the solid surface is proportional to the sur- 

face density of the micro-moments, I.e. 

a*AQ*k 18 = illiI s (6.4) 

Here air are the coefficients of the rotational surface friction. 

Expression (6.4) can be obtained from the rheologlcal law (3.4) (written 

not In differential form, but in finite differences) by taking the limit 

AC-0 , where ~5 Is the thickness of the boundary domain. Moreover, one 

must consider that only derivatives With respect to the normal to the surface 

play a fundamental role In (3.4). 

If we assume that the fluid and the boundary are Isotropic, the boundary 

domain will then possess cylindrical symmetry with respect to the normal. 

This reduces the matrix for air to the following form: 

2a 0 0 

I I 

0 2a 0 (6.5) 
0 0 P 

in projections on the normal direction (t, k = 1) and on the tangential direc- 

tions (t, k = 2, 3). On the basis of (6.5) and (3.4) the boundary condition 

(6.4) shall be written In the form 

aik(Q'- _ ?.: I'Ot v)k 1 fj = 
'k x2'. 

211 div 52’6% $- 22 &- -b 28 T& (6.6) 
S 

Any of the three conditions formulated, together with the conditions (6.1), 

yield six conditions which are sufficient to solve Equations (4.1) and (4.2). 

The boundary condition (6.6) contalns both of the previously formulated 
limiting cases. 'the left-hand side of the relation 

t 1 

In fact, If a, B 4 0 , 
6.6 vanishes and It turns Into the dynamic condition (6. ; If a, s - -, 
6.6 then turns Into the condition of the kinematic type 8 .2). 

How well the formulated boundary conditions reflect the nature of the 
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Interaction Of the fluid with the solid surface must finally be determined 
by experiment. 

In conclusion we note that in the formulated boundary condltlono the vec- 
tors v* and n; turn out to be "entangled" (confused) on the boundary. 
The question of their "disentanglement" 
and Is not solved In the present work. 

appears to be mathematically complex 

To Illustrate the character of the effects predicted by the asymmetric 

hydromechanlcs we shall consider a series of specific problems. For slmpll- 

city we shall consider the fluid to be Incompressible (dlv V = 0). Then the 

Integration of the equations of motion reduces to the aolutlon of Equation 

grad p = ~Av- (6.7) 
along with Equations (5.1) and (5,5) with boundary conditions of the form 

of (6.6). 

7. ‘ph. di8ehargr of fluid from a ogplll~ly. We shall consider the dls- 
charge of fluid from a cylindrical capillary of circular cross section of 
radius I) . We shall take its axis as the z-axis of a cylindrical system of 
coordinates (F, cp, 3). We shall seek a field of translational velocities 
V and of 'inherent angular velocities fl' in the form 

v = v (r) e,, 8’ = B (r) e w 

For this symmetry of flow cp = 0 , and 

(7.1) 

Here I.(n) Is the Bessel function of Imaginary argument of order P, . 
From the boundary conditions (6.1) and (6.6) we find 

gubstltutlng (7.4) Into (7.2) and the latter into (7.1), we find the velo- 
city field 

(7.5) 

1, (kp) - 1, (k) 
A2 k-’ I, (k) f &I2 (k) ez 1 ( p= -$A= 

The quantity of fluid, issuing from the capillary in unit time, is 

Q = Q"[l - $ (dl + 2:)) )-'I, Q" = -Fg (7.6) 

As seen from (7.6), this quantity Is less than that from the Poiseuille 
formula and also Is less the smaller the radius of the cylinder, We shall 
consider some special cases of Formula (7.6). If 111/P 9 1,then K=A, 
and (7.6) takes the form 

Q = Q” 1 _ 4 I2 ld) 
A I, (4 I (a = 00) 

Q = Q"[f- -$ (1 +d&f$)-l] (a = O) 

(7.7) 

The dependence of 4/Q" on A is depicted in Flg.1; curve 1 is for the 
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case of 0: - 0 and curve 2 is for the case Q. - o . 
If Iyl/p Is comparable to unity, 

then the curves of g/Q" against A 
will depend on Ivl/p as A -, 0 on 
the ordinate axis. Curve 
depen&nce of Q/Q" cn A for 
c=O, and curve4 fm Iylu=l-sndo=(D. 

0, llaa touulrtloarl motion of a 
rnhoos . We shall consider the oroblem 
o? flow about a sphere of radius R 
located at the origin of the spherlch 
system of coordlnaEes (f, 8, &J), by a 
stream of viscous fluid which has a 
speclfled constant velocity ucl at lnfl- 
nlty. !Che solution of the Navler- 
Stokes equations, as 1s well-hownD3], 
has the form 

Fig. 1 

Here and ln what follows. summation 1s intended by repeated Indices. !J!he 
solution of Equation (5.5) can be found ln the form 

Substituting (8.1) and (8.2) into (5.7), we find the field of translational 
velocities 

Vi= UC [i + Fi (r)] + ni (ski+ IF2 tr) 03.3) 

(8.4) 

Hare nl= x,/r 1s the unit radius-vector. We shall rewrite (8.3) In the 
s spherical system of coordinates 

vr = 11 f F, (r) -?- F, (41 u cos 0, ve = - [i + Fl (r)] u sin 0, vg = 0 (8.5) 

The field of the 'inherent' angular velocities n', ln accordance with 
(5.11), takes the form 

B, =o, 52,' = 0, Q,'= Q (r) u sin 9 

Q (r) = + - c (I+ +) exp t-r: ’ k2) 63.6) 

The constants a, b and c must be found from the boundary conditions. 
The boundary condition (6.1) Is obviously equivalent to two equalities 
I + F,(R) I 0 and pa(i)) - 0 , from which we find 

3R a=- 4 1+&c~e-" 
I 1 

bz _!!!_ 1 

4 
+ 4 c @ + IF + 1 ,-k 

R A2 (8.7) 

To determine c there remains the boundary condition (6.6), from which 

c = s/,R[l - k?i-a + k (1 + 8,k)]-’ 8, = [2 + 78-l + atX+]-l (8.8) 

For the drag F experienced by the sphere we obtain the following expres- 
sion 
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_) 

r = 
i 

(Is,, Cos.0 - Uor sin 0) ds (8.9) 

S 

The latter expression contains an antisymmetrical part 
The pressure p can be found if the explicit expression ( 

with superscript’). 

ted into (6.7) In place of v” . 
.1) be substitu- 

Fig. 2 

We obtain 

p = - zpr-2 a (n,u,) (8.11) 

ucr+ IT=R = p (-- aR-2 - 3bR-* + @-1 c [3 + 3k + 2kZ + rcS] R-Q-“) u sin 8 (8.12) 

oc,- jrzR = - 8k,-2 c (1 + k) R-2 eek u sin 8 (8.13) 

The pressure is reckoned from its value at inflnit * therefore, a con- 
stant term has been omitted In (8.11). Substituting 8.11) - (8.13) Into S’ 
(8.10) and also taking (8.7) into consideration, we find 

% Ir=R = - 3j2 R-I [I -f- a/,R-l ck2A-2e-‘k] pu sin 0 (8.14) 

orrI~=R = s/z R-’ [I + ‘&R-l ckZA-2e-k] pu COS o (8.15) 

Substituting these expressions into (8.9) and taking (8.8) into consider- 
ation, we finally find 

F=F” I+ 
i 

k2A-2 

1 - kzA-2 + k (1 -+ 6,k) 
FQ = 6npRu (8.16) 

As Is seen from this expression, taking the rotational friction of the 
fluid particles Into account leads to an Increase In the resistance in com- 
parison with that given by the Stokes formula. This result is formally 
equivalent to an Increase of the hydrodynamic radius of the sphere. We shal 
note the limiting cases of Formula (8.16). If \ r 1 /p > 1, then 

R* = R [I + A-‘] (a = oo), R* = R [I + L4-1 (A i_ Q-11 (a = 0) (8.17) 

Is depicted in Fig.2 for the case c = 0 
VI/~ Is comparable to unity, the curves 
etermined by 1~ I/p as A - 0. Curve 3 

on A for the case IYl/P = 1 and a=O, 
=l and a==. 

9. mo vlroorl~ oi ruaprarloaa I We shall consider the problem of the 
viscosity of dilute suspensions with particles of spherical form for the 
same assumptions which were once made by Einstein [l&3. We shall consider 
then the Influence which a bead exerts on the flow of a fluid in which it is 

i$!%tz& 
etrlc theory this problem reduces to the solution of 

for the boundary conditions (6.6) and (6.1) on the 
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surface of the bead and the condition 

Vi I r--to3 = =ik xk (9.1) 

at infLnlty, where ulr is a constant symmetric tensor for which alI = 0 . 
We shall attempt to find a solution to the given problem In the form 

vi = %k xk -f; ‘lit ‘Ii’ = eipm epke C9.2) 

%i ’ = ‘ipm *pks a,,.,ar, b [=kr ‘e] (9.3) 

and 
Substituting the functions J(r) and s(r) in explicit form into (9.2) 
(9.3), we find (9.4) 

uIiO = F~ (p) takrn,pr) ni + F, (r) a&.$, BIi = G, (r) takr%pr) n( + GP (r) air% 

FI (r) = 3ar+ - 15br+, F, (r) = 6br-’ 

G1 (r) = - c (15 +- lSrk,-1 + 6r%ka-a + flkpd) r4 exp (- r/kJ 

GO (4 = - c (6 +- 6rk,-1 + 313ka-% + 16kses) r-’ exp (- r /k,) (9.5) 

Substituting (9.4) and (9.5) into Expression for uII , and this Into 
(9.2)) we find for the field of translational velocities 

Vi = F,” (r) (akr nk n,.bi + [Fa” (f) + rl air nr (,9.6) 
Flo (r) = F,” (r) - OF-l G1 (r), F,” (r) = & (~1 - fW1 G, (r1 

In the spherical system of coordinates Expression (9.6) has the form 

Vr = IF,“(~) + FaO b) -3; Fl @r (fh VP), @r (fL 0) = Qr npr 

v, = Pa0 (4 -I- 71 - Q’e (9, ‘+% Qe (0, cp) = air nr ani / 63 (9.7) 

uq = [Faa (4 + rl a0 (0, cp), Q, (0, cp) = air n, csc BanJde 

Knowing qio and n, I*, we find from (5.11) the field of “inherent” angu- 
lar velocities 

Q,’ = 0, Q,’ = Q (4 @)cp (0, cp), Q2,’ = - Q (4 00 (9,cp) 

Q (r) = 3arIs - c (3 + 3rks-l + r*kam2) re3 exp (- r / k,) (9.6) 

The constants 3, b and c are found from conditions (6.6) and (6.1). 
As is easily seen from (9.7), condition (6.1) is equivalent to two equalities 
(F,’ (R)=O, Fao (R)+R=O), from which 

a=-?- ; %‘[I-$(Ga(R) + -$ G,(R))], b- -;k -$Gr(R)] 

The constant 0 is determined from condition (6.6). We shall write the 
rightlhand side of Expression (6.6) in the symbolic form 

M = 2 (t + 8) (e,v) Q’ + 2ze,x rot W (9.9) 

Taking (9.8) Into consideration in It, we obtain 

M,=O, M,= 

Mq= - - $ Q W]ql(W 

(9.10) 

From (9.8) and (9.10) it Is seen that the boundary condition (6.6) is 
equivalent to the equality 

0 dQ (4 
dr 

- (ur + 2) F-l cl (r) 1 = 0 
r=R 
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Hence we find (9.11) 

5R’ 8 1 
c=-- 

2 3 (k + 4) (1 - k?4-‘) + ka [I + &, (k + l)] ’ 
6, = 

3 + d-1 f uR8-’ 

Subatltuting the values found for c, b and c into (9.6) and restrlc- 
tlng ourselves only to terms of order l/ra, we find 

5 (r) = 6121P%-2 (9.12) 

kaA-a (k + 1) 
3 (k + 1) (1- PA+) + ka [1+6, (k + 1)] 1 (9.13) 

We shall now calculate the dissipation of energy 

w = s (oikvi + &k$') nk ds 
s 

(9.14) 

The integration Is carried out over a sphere of radius 
only terms of order 

r,aR, therefore, 

is seen that Q,'- r -a 
r-' must be reta$.ned in the integrand. 
; consequently pik-r-? 

From (9.8) it 
Therefore, the contribution of 

the second term In (9.14) to W will be equal to zero. We shall consider 
the first term. We shall write oik In the form oik= oiki $ oik-9 where 

(T&' = - p6ik + 2psik', ‘ik- = - 27 &k- + Ql’ “[ik) (9.15) 

The pressure p can be found If (9.12) is substituted into (6.7) 

p = - .Qr-lI; (r) a ps yPs (9.16) 

‘ik + = aik + r-l 5 (r) [5apa p 8 i k n n n n. - aksnin, - aisn, nk - 8ikap,npn,] (9.17) 

Substituting (9.16) and (9.17) Into (9.15), we find 

uik+ = 2p {aik + r-l 5 tr) [5apSnpn8nink - aksntn8 - ad??k]] (9.18) 

If (9.12) and (9.8) are substituted into (9.15), we then find oz= 0 . 
Therefore, in (9.14) only the symmetr’ic part of the stress tensor 
a contribution. Substituting (9.18) and (9.12) into (9.14) and resE$c?$" 
ourselves only to terms of order P2, we obtain 

w = 21" j (35 (r) (aTBnpn8)* + tr - b b)) aF,8apkn8nkj & (9.19) 

Taking into consideration that 

l (atkR&)Pds = (all* + aZ%a + ass2) '/u nrOa 

we find s 

W = 2p (en2 + aZpa + as*) (v + VP) (v = 4/sar,8, Q* = 4/s&*s) (9.20) 

Expression (9.20) does not differ from the analogous relation in [14J 
provided thet the true radius of the bead R be replaced in it by fly. 
Omitting further calculation, we find the final result In the form 

IL* = P (I -I- "/P(P*), 'p* = 4/e ?cPc, (9.21) 

where P* is the viscosity of the suspension and c. is the volume concen- 
tration of beads. 

From Formulas (9.13) and (9.21) It is seen that W* depends on the radius 
of the suspended particles in a more complicated manner In the asymmetric 
theory than in the Einstein formula. If, in accordance with Einstein, 
depends only on the total volume occupied by all the beads Independent o? 

* 

their radius, 
radius R . 

in the case under consideration It then depends on the bead 
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As was done previously, we shall discuss special cases of Formula (9.13). 
If IrI/p>% then 

Graphs of the dependencies of (9.22) are analogous to the curves of Flg.2. 

The flow of “nonclassical” fluid is accompanied by an additional dispersion 
slon of energy. In fact, as Is seen from the problems birder consideration, 
a solid body moves through the fluid with greater reslstence than In the 
classical case, the quantity of fluid discharged from a capillary turns out 
to be less than that corresponding In the Polseullle formula, and the vleco~ 
slty of suspensions p* Is greater than that corresponding to the Einstein 
formula. The additional dispersion of energy also leads to the fact that the 
velocity field Is found to be less ln absolute value ro- 
CijmamiCS for the same flow conditions. We note that, 
only the vertical part of the velocity vector experiences a change. 

A art of the additional terms In the expression for the dissipation func- 
tlon s 2.7) are associated with second derivatives of the velocity field V” .--. , 
with respect to the spatial coordinates, while the classical terms are etlpu- 
lated only by first derivatives. Such additional characteristics a8 the ten- 
sor of the micro-moments pir and the antisymmetric part of the stress ten- 
sor are also determined by second derivatives of the field V’. Consequently, 
the effects associated with the micro-momerita are important In lnhomogeneous 
velocity fields. 

It Is not difficult to see that as q, 7, 13 - 0 and y 4 - the results 
of asymmetric hydromechanlcs pass over Into the results of ordinary hydro- 
mechanics. Moreover, as follows from Formulas (5.2) and (5.5), the quantl- 
ties k /t and 
tern). k!hCrefore, 

k& vanish (z Is a characterlstlc dimension of the aya- 
the solution of Equations (5.5) and (5.1) has the character 

of a boundary layer Cl51 . This means that the additional velocity field la 
quickly damped 1; the &lti~4,reglon of width of the order of k and k. . 
Therefore, the nonclassical effects will be the greater, the smaller the 
linear dimension of the system 
of the bead, etc.). 

z (the radius of the capillary, the radius 
Consequently, It Is seen from the problem under COnsI- 

deratlon (Figs. 1 and 2) that the deviation from the claaslcal results Is 
the greater, the smaller the dimensionless numbers K and A and also that 
the nonclassical results can be obtained from the formulas of ordinary hydro- 
mechanics (for the quantity of fluid discharged, the resistance, the-vleco- 
slty) by replacing the true dimension of the system 1 with the effective 
dimension z*= 1 + b , where A Is determined by the characteristics of the 
fluid. 
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