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The so~-called saymmetric mechanics of continuous media 1s a generalization of
the ordinary continuum mechanics of continuous medla for the case 1in which
the stress tensor becomes asymmetric @nk=¢=0ko.

The expression O €y = Y2(0; — 0);) ey; defines the resultant of the
moments of the forces which act on an element of the medium. Therefore, this
resultant may be balanced only by the moments of couples. In a series of
works [1 and 2]the existence of volume-distributed couples m,, stipulated
by external effects, is assumed. However, the case in which %he couples act
between particles of the medium is of greatest interest [3 to 5], The effect
of one contiguous part of the medium on another is then characterized not
only by surface forces (stresses), but also by surface moments (micro-moments).
This concept 1s reflected in a seriles of works [5 to 8].

Initially, asymmetric mechanics of continuous media was developed as a
theory of elasticity, but recently investigations have appeared [9 to 11] in
which asymmetric hydromechanics is worked out. The need for these investi-
gations stems from the desire to define more precisely the limits of validity
of the classical hydromechanics of viscous media. Asymmetric hydromechanics
may possibly explain a series of deviations of experimental data from the
preaictions of theory. It differs from ordinary hydromechanics by a more
precise definition of the state of stress which 1s characterized by an asym-
metric stress fensor oy, (0; == 0y and a tensor of the surface micro-moments ,, .

The state of deformation is described by the deformation rate tensor ¢,
and by the micro-torsion and micro-bending rate tensor p;,. The rheologi-
cal laws, 1.e. the relation of o,, and y,, with ¢, and r;, , are estab-
lished. Additional coefficients which may be called the rotational viscosity
coefficients appear in these relations,

The equations of motion of the fluld in the velocity components and thelr
general solution are constructed. Boundary conditions sufficlent to solve
the equations of motion are formulated. Fluid discharge from a capillary,
the motion of a sphere in the fluld and the viscoslty of suspensions are
conslidered.

1, The state of stress, The state of stress of a continuous medium
(whether fluid or solid) has been considered from the point of view of asym-
mertic theory in a series of works [5 to 8]. It is characterized by an asym-

metrlc stress tensor o;, and a micro-moment tensor u,, (*), which are sub-

*) Footnote on the following page.
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Ject to the equations of the translational and rotational motions of an ele-
ment of the medium (**)
55 dv 17/
51%: -+ pfi = Pgti , 3%  Onm €imn +— Ppmy; = 0 (1.1)
Here p 1s the density of the medium, s, and m, the density of the
volume-distributed forces and moments, v, the velocity of the translational
motion of an element of the medium, d/dt the substantive derivative and
~ the unit axial asymmetric tensor (the Levi-Civita tensor).

It 18 easlly seen that Cnpm€imn = Onm €imn, Where o,," 1s the antisym-
metric part of the Btress tensor. From (1.1) it follows that the asymmetry
of the stress tensor is stipulated by the micro-moments u,, and the volume-
distrlbuted moments m,. In classical hydromechanics u,,= 0 and my= 0 ;
therefore, the stress tensor 1s symmetric..

2. The dissipation funotion. To obtaln the generalized rheological laws
we shall turn to consideratlon of the process of fluld deformation under 1so-
thermal conditions.

In the asymmetric theory it is necessary [5] to take into consideration
the "inherent" angular characteristics Q° of the particles of the medium
which differ from the rotational velocity of a portion of the medium as a
whole (i.e. | grot + v |). In other words, the state of a flowing fluid
1s determined not only by the field of the translational velocltles v , but
also by the field of the angular velocities Q° (***)

In this case the expression for the work of deformatlion of a unit volume
of the medium (whether fluid or solid) in unit time has the form (*¥***)

OL | 0t = ow&'uc -+ Pir ix (2.1)

Here and in what follows the Jot denotes differentiation with respect to
time. The generallzed deformation rates c¢%, and ry, are related to the
veloclity field v, and to the angular velocity field Q*, in the following

manner : i dv; 9 . o 9.9
. —_— s —— : . =— R
€ ik axk 1 €k ik 0$k ( )
*) By mlcro-moments are meant the denslty of couples, along with the den-

slty of forces (the stresses), which act on a section, conceptually drawn in
the medium, which 1s in a stressed state. The meaning of y,, 1s seen from
the relation p,,vi=M,, where J, 1s the density of surface moments on an
elementary area lnslide a body with normal v,. The diagonal components of
W;y characterize the torsional moments, the nondiagonal components the bend-
ing moments.

**)  In the papers [9 to 11] a dynamic term appears in the right-hand side
of the second equation of (1.1). However, taking it into account does not
affect the basic relations obtalned below.

*¥%) This 1is the conventional terminology. By the angular velocity Q°
there 1s meant a quantity averaged over a physically small volume, which

characterizes an internal rotational motion in it differing from its motion
as a whole,

**¥%) Cf. the expression which follows immedlately after relation (8) in[5].
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In the case of a fluld the quantity 23r/3t may be represented in the form
of a sum of two terms: the rate of increase of free energy d(pr)/dt sti-
pulated by the elastic deformations and the rate of heat transfer vy stipu-
lated by the enrgy dissipation processes, 1i.e.

X _Lrn+v 2.3)

If 1t 1s assumed that the accumulation of elastic deformation is stipu-
lated only by the bulk compressibllity of the fluid, then

-%— (pF) = — pey (2.4)

where p 1s the thermodynamic pressure. Substituting (2.%) into (2.3) and
taking (2.1) into consideration, we obtain
¥ = (0% + pdix) &' + BinT 1k (2.5)
Expanding the dissipation function in a series in powers of the components
of the deformation rates ¢*;, and r*,, and retaining only terms not higher
than second order, we have
Y ¥ = Aipim€'ir€tm + Bikim€ kT im + CoimT'5€'tm + DuimT 0T '1m (2.6)

The matrices of the coefficlents Agm, DBixims Cikim and Diygm are
determined by the characteristics of the fluld. We shall restrlct our con-
slderation to isotropic fluids only, whose characteristlics do not vary with
specular reflection (i.e. the fluid is nongyrotropic); then

YW = Yhe'mntrn + Vo +v) s + Vo 0 — ¥) eae’ne +  (2.7)
+ N Pt Tk 0T

The coefficlents of this quadratic, essentially positive formula, as shown
in [(12],0bey the following inequalities

p>0, 3A+22>0, p—y>0 6+1t>0 6~1>0, yO

3. The rheologioal laws. To find the rheological laws, we shall apply
the theory of Euler concerning homogeneous functions to Expresslon (2.7)

Identifying this expression with (2.5), we obtain the relations
oy = — pdu + -;— (3—2%>r'ik , P = 1, (;:Tk )t'u: (3.2)
Substituting Expression (2.7) for Y 1in them, we obtain
O = — pOu + Meudue + (0 + V) e + (0 — V) (3.3)
Bix = 207 mndu + 270 + 200 (3.4)

These relations, as 1s easily seen, have the form of a generalized Newton-
Navier-Stokes hypothesis. The coefflicients A and yu are the coefficients
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of the bulk and shear viscosity. The coefficlents n , r and ¢ may be
called the coefficients of rotational viscosity (*).

4. The basioc equations, The equations of motion 1in the velocity compo-
nents can be obtalned by replacing the stresses ¢,, and the mlcro-moments
#,, in the equations of motlon in the form (1.1) with the deformation rates
€*,, and re, ., according to the rheological laws (3.3) and {3.4). The latter,
in turn, are replaced wlth the velocitles v, and the angular velocitles
Q",, in accordance with (2.2),

Neglecting the dependence of the coefficients of viscosity (k,u,n,e,y)
on the coordinates, we obtaln (4 1)

d
p —d—:—’— = pf —grad p + (A + 2p) grad div v — (up —y)] rot rotv — 2yrot Q"
(M + v +6) grad div Q" — ¢ rot rot Q" + 2yQ" — yrot v + pm = 0. (4.2)

This system of two vector equations contains eight unknown functions —
three components of velocity v , three components of the "inherent" angular
velocity 0°, the pressure p and the density p . To determine these
eight functlons we must have two additional equatlions along with the six
equations of motion in the form, let us say, of (%.1) and (4.2). They may
be obtained from the law of conservation of mass (the continuity equation)
and the law of conservation of energy. The continulty equation 1s not rela-
ted to the state of stress 1n the fluid and, therefore, has the same form as
in ordinary hydromechanics

ap | ot + div (pv) = 0 (4.3)

The heat transfer equation does depend on the state of stress and, there-
fore, must be modified. If the concept of specific internal energy ¢ ,
which is the internal energy unit mass (**), be introduced, its increment
will then be determined: (1) by the flow of energy which 1is stipulated by
the mass transfer across the boundaries of the volume, (2) by the transfer
of heat due to heat conduction, and (3) by the elementary work of the volume
force and the volume moments, the surface forces and the surface moment (***)
The first two 1tems do not require modification, but the third, the work of
deformation of a unit volume of the fluld, must be calculated according to
Formula (2.1). We finally obtain

p de/dt = div (x grad T) + q (ot + Pl ) (4.4)

* They are numerically equal to the moment taken over a unit surface of a

portion of the medium, when the latter 1s rotating with respect to 1ts neigh~-
bors so that the gradient of angular veloclty 1s equal to unity. The coef-
ficient y characterizes the degree of "coupling” of a particle with its
environment. If y- 0 , then the particle moves about freely relative to

the surrounding medium. If vy~ =, then the particle 1s rotated together
with the part of the medium adjacent to 1t.

**) This can be done neglecting the energy of interaction of the parts of
the fluld with each other.

*%#) Other sources of variation of ¢ will not be considered.
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Here x 1s the coefficient of heat conduction, ¢ the thermal equivalent
of work and 7 the temperature. To complete the equations we must still
add to (4.4) the equation of state

p=plT) (4.5)

5. The general solution of the equations of motion for the ocase of
"oreeping" motions, Because of the nonlinearity of the expression for the

acceleration dv |/ dt = 0V | ot 4 (VV) v

the system (4.1) and (4.2) turns out to be very complicated. However, if we
restrict our consideration to steady "creeping" motions (the Stokes appro~
ximation) in the absence of volume distributed forces (*) and moments (#%=0,
m,= 0), the problem of integrating the equations of motion then reduces to
the solution of well-known equations of second order.

In fact, applying the operation of div to (4.1) and (4.2), we obtain

Lg=0, k’A¢—¢=0 (5-1)
Here (**)
g = (A -+ 2p) divv — p, ¢ = divQ
k= —1Yy(n+6 4+ 1)y (5.2)
Further, substituting (4.2) into (4.1), we arrive at Equation
grad g — 2urot Q -0 (W —y) T ' rot rot rot @ = 0 (5.3)
from which we easily find
rot Q@ = Q' 4 Yu-tgrad g (5.4)
where ', satisfies Equation (***)
k2 rotrat Q, 4 Q' = 0, k=10 (p —y)p 'yt (5.5)

Taking (5.4) into conslderation, we obtain from (4.1) a separate equation

- grad p + (A + 2p) grad divv —prot rot v =2yp (u — y)1 Q°; (5.6)

which may be regarded as inhomogeneous. Its solution has the form

v=v"—0plQ, (5.7)
Here v° 1s the solutlion which corresponds to the homogeneous equation
—grad p + (M + 2p) grad divv® —prot rot v: = 0 (5.8)

i.e. to the Navier-Stokes equations of ordinary hydromechanics, and —gu™Q);
is the particular solution of (5.6) which 1s easily found if (5.8) is con-
sidered.

We shall now find Q. Substituting the relations (5.5) into (5.4) and
taking (5.8) into consideration, we arrive at Equation

*) Or if the volume forces have a potential.
**) Here y # O . The case y=0 requires special consideration,
**%) We note that the constants %, and ¥, have the dimension of a length,
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rot Q = — k,® rot rot ', 4+ 1/, rot rot v° (5.9)
from which we find
Q =1, rot v — k,2rot Q', 4 grad ¢* (5.10)

to within grad o* which for the present 1s undetermined. Comparing the
expression for div Q' found from (5.10) with Expression (5.2), we obtain
%= %29 to within an unessential harmonic function. Hence

Q =1,rot v’ — k2rot Q' + k?gradg (5.11)

Thus, the general solution of the system of equatlions for the steady, slow
flow of a fluid (4.1) and (4 .2, is gilven by the relations (5.7) and (5.11),
l.e. it reduces to the solution of the well-known Navier-Stokes equations of
ordinary hydromechanics (5.8) and of equations of the Helmholz type (5.1)
and (5.5).

We note that the latter can be written in the form of a single equation,
introducing a single vector Q', in place of ¢ and Q7, (divQ’, = 0)

Q, = — k2rot Q" + k%grad¢ (5.12)
which satisfies Equation
k2 grad divQ’, — k2 rotrotQ, —Q, =0 (5.13)
Then 1n place of (5.7) and (5.11) we have
v = v® —gulrot Q, Q' =9Q, 4 Y,rotv® (5.14)

6. The boundary oonditions. In the asymmetric theory, as has already
been noted, the state of the fluid is characterized additionally by a field
of angular veloclties Q1* . 1In connectlon wlth them three additional equa-
tions of motion appear in the theory. It follows from this that the state
of the fluid must be characterized by more complicated boundary conditions
at the boundary (*).

To solve the equations of motion (4.1) and (4.2) or, what is the same,
(5.1), (5.5) and (5.8) six condltions are necessary. The field of transla-
tional velocities can obviously be given at the boundary, just as in ordinary
hydromechanics, in the form of the no-slip condition

[ve —@ptrot Q,]s =V (V velocity of the boundary) (6.1)

The second three conditions must obvlously determine the field of angular
velocities Q°. In these conditions the mechanism of influence of the bound-
ary on the fleld of angular velocitles ()° should have 1lts reflection. Since
this mechanism of onteraction 1s far from clear, we shall then restrict our-
selves to the formulation of boundary conditions for the vector Q° in cer-
tain ideallzed cases. A limliting case can be a fluid and a solid surface
which interact so strongly that a particle of fluid does not turn over rela-

*) Here 1s meant only the boundary between the fluid and a solid which is
an impervious body for the fluid.
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tive to the surface and, therefore, 1ts angular velocity 1s equal to the
angular veloclty of the surface

Qls =1,rotV (6.2)

Another case can also be represented — the limit of weak influence of the
surface on the angular veloclty of the fluld in which the particles turn
over freely wlth respect to the surface. Then, obviously, the dynamic con-

dition Mi I s = p’ikvk ls = O (6-3)

must be satisfled on the boundary in place of the kinematic condition (6.2),
where JM;|s is the density of micro-moments on the surface and v, is the
vector of the normal to it.

Between these extreme cases are found the cases of constrained, rotational
slip of the fluid along the surface of the body. In this case it is natural
to assume the existence of friction, as a result of which micro-moments arise
on the surface, We shall assume that the overfall of the angular velocities
AQy = Q% — 1/, (rot V). on the solid surface is proportional to the sur-
tace density of the micro-moments, i.e.

(likAQ'k Is = A[i | s (64)
Here a,, are the coefflcients of the rotational surface frictilon.

Expression (6.4) can be obtained from the rheological law (3.4) (written
not in differential form, but in finite differences) by taking the limit
AE -0 , where AE 1s the thickness of the boundary domain. Moreover, one
must consider that only derivatives with respect to the normal to the surface
play a fundamental role in (3.4).

If we assume that the fluld and the boundary are isotropic, the boundary
domain will then possess cylindrical symmetry with respect to the normal.
This reduces the matrix for gq;, to the following form:

20 0 O
0 2a 0 (6.5)
o0 0 B

in projections on the normal direction (4, % = 1) and on the tangential direc-
tions (1, ¥ = 2, 3). On the basis of (6.5) and (3.4) the boundary condition
(6.4) shall be written in the form

Q'

',
g (@ — 1ot Ve |s = (Zn div @8y + 205 + 2 a—z,,—) Ve (6.6)
S

Any of the three conditions formulated, together with the conditions(6.n{
yield six conditions which are sufficient to solve Equations (%.1) and (4.2).
The boundary condition (6.6) contains both of the previously formulated

limiting cases. In fact, if o, B - O , 'the left-hand slde of the relatlon

6.6) vanishes and it turns into the dynamic condition (6.?g; if a, B~ =,
6.6) then turns into the condition of the kinematic type .2)

How well the formulated boundary conditions reflect the nature of the
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interaction of the fluid with the solid surface must finally be determined
by experiment.

In cgnclusion we note that in the formulated boundary condltions the vec-
tors v" and 1; turn out to be "entangled" (confused) on the boundary.

The question of thelr "disentanglement” appears to be mathematically complex
and 1s not solved in the present work.

To 1llustrate the character of the effects predicted by the asymmetric
hydromechanics we shall consider a serles of specific problems. For simpli-
city we shall consider the fluid to be incompressible (div V = 0). Then the
integration of the equations of motlon reduces to the solution of Equation

grad p = pAv’ 6.7)
along with Equatlons (5.1) and (5,5) with boundary conditions of the form
of (6.6).

7. The discharge of fluid from a oapillary. We shall consider the dis-
charge of fluld from a cylindrical capillary of circular cross sectilon of
radius R , We shall take its axis as the z-axls of a cylindrical system of
coordinates (r, ®, i)' We shall seek a fleld of translational velocitles
v and of "inherent" angular velocities (' in the form

v=u(r)e, Q= Q(ne, (7.1)
For this symmetry of flow ¢ = O , and

v (r)= [B 4+ L gﬁ r—29 ¢y, (L)] (7.2)
4p 9z b ke (%g = const
- Z -
Q@) = [01‘7211 <_’_> L e r} (7.3)
ky u Jz
Here 71,(x) 1s the Bessel function of imaginary argument of order n
From the boundary conditions (6.1) and (6.6) we find
B=— 10p . 8 cf (py (k:i)
dn 0z w ks (7.4)
4 0z K10y (k) -+ 5,7, (R) 0

Substituting (7.4) into (7.2) and the latter into (7.1), we find the velo-
city field

(7.5)
= _10Ppaly gy 2 __To(kp) — Lo (B) ]e (ZL,AzVZp.R)
YT T o [ Pt T E L TaLm T TR Ve
The quantity of fluld, issuing from the capillary in unit time, is
— a0 4 L I, (k) 1 o_.  mR% 3p
A R G~ o7 B =P 7.6
Q=@ [t (o 7o) } ? 8y 9z (7.6)

As seen from (7.6), thils quantity is less than that from the Poiseuille
formula and also is less the smaller the radius of the cylinder. We shall
conslder some special cases of Formula (7.6). If IY|/p > 1, then K =4,
and (7.6) takes the form

Q=Q°[1—-741_2t:;] (@ = o) .7

The dependence of @Q/¢° on 4 1is depicted in Fig.l; curve 1 is for the
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case of g = 0O and curve 2 1s for the case ¢q = o .,

If |y|/u 4s comparable to unity,
then the curves of @/Q° against 4 7
will depend on |y|/u as 4 - O on q
the ordinate axis. Curve 3 depicts the T 7
dependence of ¢/Q° an 4 for ? /ﬁ = 1 and A i
a =0, and curve 4 far |Y|u-l and q =a. ,//
-

8. The translational motion of &
sphere, We shall consider the problem
of flow about a sphere of radius R ,
located at the origin of the spherical //

INTASAN

system of coordinates (r, 6, w), by a
stream of viscous fluid which has a
specified constant velocity u, at infi- 4
nity. The solution of the Navier-

Stokes equations, as is well-known[13],

has the form 4 4 4 7

R

2 = nb € €y ax 5 U 0) wl, Fig. 1
(8.1)
f(r)=ar + -
Here and in what follows summation is intended by repeated indices. The
solution of Equation (5.5) can be found in the form

V= Oumps o BV wh V()= Texpm @82)

Substituting (8.1) and (8.2) imto (5.7), we find the field of translational

velocitles
v = Uy 1+ FOl+ n; (nkuk VFy (r) (8.3

R IS AL

no=- [E-Ra g g gl T

r

(8.4)

Here n,= x,/r 1s the unit radius-vector. We shall rewrite (8.3) in the
spherical system of coordinates

=U4F@4FROlucsl v=—[14+F@lusing, 2,=0 g5

The field of the "inherent" angular velocities Q°, in accordance with

(5.11), takes the form
Q, =0, Q=0 QS =Q() usinf
a r\ exp(— r/ky) (8.6)
Q=5 —¢ (1+ —Iﬁ—)——r'—_—

The constants g, b and o must be found from the boundary conditions.
The boundary condition (6.1) 1s obviously equivalent to two equalities
1+pm(R) =0 and p,(R) = 0, from which we find

= 3R 4 B -k b 1 P o Ve ol P
a T{1+3_R°Z=’e } 4 { + s } @.7)
To determine o there remains the boundary condition (6.6}, from which
¢ =% R — KB4 + k (1 + 8] 8, = [2+ 701 +aRO1T  (8.8)

For the drag F experienced by the sphere we obtaln the following expres-

slon
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F= \ (0,,c05.8 — Gy, sin 0) ds (8.9)
Op=—p+ 2o, Gy = Oy oF O (8.10)

The latter expression contains an antisymmetrical part (with superscript~).
The pressure p can be found if the explicit expression (8.1) be substitu-
ted into (6.7) in place of v°.

it ,

I —

1 \\\4\\/ \{\

‘?\\\\\‘\
. T—
il / 7 J 4 5 64
Flg. 2
e ovadn = — 2ur2 a (nguy) (8.11)

Oy Ir=R=p{— aR2— 3bR~* 4 Op~l¢c [3 + 3k + 2k 4 K] R4 *}usin § (8.12)

Oop lpp = — 0k, 2c (1 + k) R 2eFusin 6 (8.13)

The pressure is reckoned from its value at infinity; therefore, a con-
stant term has been omitted in (8.11). Substituting l(8.11) - (8.13) into
(8.10) ant also taking (8.7) into consideration, we find

Oor lr=p = — 3 R [1 -+ 43R ekt~ k) pu sin 0 8.14)
Orrl,_p =33 R1 [1 4 */;R1 ch?A-2"] pu cos § (8.15)

Substituting these expressions into (8.9) and taking (8.8) into consider-
ation, we finally find

k242
F = F° : s F° = 6auRu 8.16

[1 M g ey g 62k)} H (6.16)

As 1s seen from this expression, taking the rotational friction of the

fluid particles into account leads to an increase in the resistance in com-
parison with that given by the Stokes formula. This result is formally
equivalent to an increase of the hydrodynamic radius of the sphere. We shall
note the limiting cases of Formula (8.,16). If |y|/p>>1, then

R*=R[1+47] (@=o00), R*=R[+242A+21] @=0) (817

The dependence of R*/R on A 1s depicted in Fig.2 for the case o = 0
fcuvel) and o = « (curve 2). If |y|/u 1s comparable to unity, the curves
R*/R will tend to a finite yalue determined by lyl/u as 4 - 0. Curve 3
deplcts the dependence of R°/R on A for the case |y|/u =1 and a = O,
and curve 4 for the case lyl/ﬁ =1 and q = .

S. The visocosity of suspensions, We shall consider the problem of the
viscosity of dilute suspensions with particles of spherical form for the
same assumptions which were once made by Einstein [14]. We shall consider
then the influence which a bead exerts on the flow of a fluid in which it 1is
immersed. In the as etric theory thils problem reduces to the solution of
Equatlons (6.7) and (5.5) for the boundary conditions (6.6) and (6.1) on the
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surface of the bead and the condition

Vi [r+00 = Gix T 9.1y

at infinlty, where g,, is a constant symmetrlc tensor for which a,;,=0 .
We shall attempt to find a solution to the given problem in the form

V= G Tt Vi Q= G O 92,92, [akr agx(:)] 9.2)
_— o 0 * ° a
Vi = Uy — r Q 1i, Vi = Cipm Cpks 3202, [ kr g;:)] {9.3)
Substituting the functions f(r) and y(7) in explicit form into (9.2)
and (9.3), we find (9.4)
v” = Fy (1) (@emyemy) ny 4+ Fy (r) agn,, Q= Gy (1) (@gymny) my + Gy (1) g,
Fy (r) = 3ar?® — 15br-4, Fqy (r) = 6br*
Gy () = — ¢ (15 4 15rky™ - 6:%%,~3 + r3%,™9) r~4 exp (— rfky)
Gy () = — ¢ (B 4 6rky~! + 37,2 + %) r—4 oxp (— r / ky) (9.5)

Substituting (9.4) and (9.5) into Expression for wv,, , and this into
(9.2), we find for the field of translational velocities

vy = Fy° (1) (g, my n)ny 4 [F° (1) + r] ag. n,
FP ()= F (1) — 8l Gy (), Fo° (1) = Fa (1) — O™ Gy (1)
In the spherical system of coordinates Expression (9.6) has the form
v = [F° (1) -+ Fy° () 4 r] @ (0, @), @, (8, Q) = ay, mym,
vg = [F3° (N +71— @y (0,9), Qg (8,9) = a5, n, 3n;/ 80 9.7
vo= [F° (r) 4 1] ©,(0,9), @, (0,9) = a; n, cscBn/db

Knowing v,,° and Q,,', we find from (5.11) the field of "inherent" angu-
lar velocities

(9.6)

Q' =0, Qy = Q(r) D, (8, 9), Q, = — Q(r) @y (6,9}

r ®
Q(r) = 3ar™® — ¢ (34 3rky 4 r2k,;"2) r3exp (— r/ ky) (9.8)
The constants g, » and ¢ are found from conditions (6.6) and (6.1).

As is easlly seen from (9.7), condition (6,1) is equivalent to two equalities
(F,° (R)y=0, F,° (R)4+R=0), from which

= ~—%Ra[1—§§(ca(ﬂ) +2am), s=-%[t — 6 )]

The constant ¢ 1s determined from condition (6.6), We shall write the
right-hand side of Expression (6.6) in the symboliec form

M =2 (t 4 0) (e,v) Q" + 27e,X rot Q° (9.9)
Taking (9.8) into consideration in it, we obtain

M,=0, M= [29:'%(_’2. ~%a (r)]w,., 8, 9)

aQ () 0 (9.10)
. r T
M= — (20280 _Zam]|o,6e

From (9.8) and (9.10) it is seen that the boundary condition (6.6) is
equlvalent to the equality

[0 480 _ @r 4 1) am]_ =0
dr R

r=
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Hence we find (9.11)
__ 5R® P , b, = 1
2 3GF DA =AY+ &2 [1 + 8 (k+ 1)] s 3+ 101 F aRf!

Substituting the values found for g, » and ¢ 1into (9.6) and restric-
ting ourselves only to terms of order 1/r?, we find

v; = agmr — L (r) (am npns) ny, C(r) = 8/, R*3r2 (9.12)
k242 (k4 1) 9.13
R = R’[i T ST A= BA T B 150, ( F D] ] (©.13)

We shall now calculate the dissipation of energy
W= | ©Our; + 1) ny ds (9.14)
8

The integration i1s carried out over a sphere of radius re=> R, therefore,
only terms of order r~2 must be retajned in the integrand. From (9.8) it
is seen that Q; ~ r'®; consequently Kjz ~ 7% Therefore, the contribution of
the second term in (9.14%) to ¥ will be equal to zero. We shall consider
the first term. We shall write o) 1in the form oy = o,* 4 0", where

Oyt = — pdy + 2ney’, Oy = — 21 (e + @ e) (9.15)
The pressure p can be found if (9.12) is substituted into (6.7)

= — 2ur71g (1) ap, myng (9.16)
eyt = agy + 11 L0 [Bap nyngryny — apning — ayng ny — 8ya non ] (9.17)

Substituting (9.16) and (9.17) into (9.15), we find
oyt = 2 {agy + r 1 L) [Sapnnnny, — apnng — agnn, I} (9.18)

If (9.12) and (9,.8) are substituted into (9.15), we then find o3 =0 .
Therefore, in (9.14) only the symmetric part of the stress tensor g, makes
a contribution. Substituting (9.18) and (9.12) into (9.1%) and restricting
ourselves only to terms of order 72, we obtain

W= 24 §BL () (@, nn)t 4 (r — L (M) apgapungmydds (9.19)

Taking into consideration that
S“ik"ia"k”sd"" = (ap® 4 ag? + ag,?) 45 nrg?
8

S(“ik"i"k)’ds = (a5 4 ag? + agy?) ¥y 70re?
we find 8

W = 2u (a1® + a5 + ass®) V + 1/;0%) (V= Yy nrgd, ©* = */;nR*)  (9.20)

Expression (9.20) does not differ from the analogous relation in [14]
provided thet the true radius of the bead R be replaced in it by p&*.
Omitting further calculation, we find the final result in the form

pr*=p 1 +%9%, 9* = /3 nR*c, (9.21)

where p* is the viscosity of the suspension and ¢, 13 the volume concen-
tration of beads.

From Formulas (9.13) and (9.21) it is seen that p* depends on the radius
of the suspended particles in a more complicated manner in the asymmetric
theory than in the Einstein formula. If, in accordance with Einstein, u*
depends only on the total volume occupied by all the beads independent of
their radius, in the case under consideration it then depends on the bead
radius & .
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As was done previously, we shall discuss special cases of Formula (9.13).
If |y//p>1, then

R* A4 1)Th R* 9(A-f1) Th _
e[ s 4 e-w Fe[raGEe] © —(3)22
.22)

Graphs of the dependencies of (9.22) are analogous to the curves of Fig.2.

The flow of "monclassical” fluid is accompanied by an additional dispersion
sion of energy. In fact, as 1s seen from the problems unhder consideration,
a solid body moves through the fluid with greater resistence than in the
classical case, the quantity of fluid discharged from a capillary turns out
to be less than that corresponding in the Poiseuille formula, and the visco-
sity of suspensions u* is greater than that corresponding to the Einstein
formula. The additional dispersion of energy also leads to the fact that the
velocity field 1s found to be less in absolute value than in ordinary ro-
dynamics for the same flow conditions. We note that, according to (5.7),
only the vortical part of the veloclty vector experiences a change.

A part of the additional terms in the expression for the dissipation func-
tion %2.7) are assoclated with second derivatives of the velocity fleld v°
with respect to the spatial coordinates, while the classical terms are stipu-
lated only by first derivatives. Such additional characteristics as the ten-
sor of the micro-moments y,, and the antisymmetric part of the stress ten-
sor are also determined by second derivatives of the field v°. Consequently,
the effects associated with the micro-moments are important in inhomogeneous
velocity fields.

It is not difficult to see that 88 n, 7, 6 = O and y = = the results
of asymmetric hydromechanics pass over into the results of ordinary hydro-
mechanics. Moreover, as follows from Formulas (5.2) and (5.5), the quanti-
ties k, /1 and x,/1 vanish (I 1is a characteristic dimension of the sys-
tem). kn8refore, the solution of Equations (5.5) and (5.1) has the character
of & boundary layer [15]. This means that the additlonal velocity field 1s
quickly damped in the limiting:region of width of the order of %, and %, .
Therefore, the nonclassical effects will be the greater, the smailer the
linear dimension of the system { (the radius of the capillary, the radius
of the bead, etc.). Consequently, it is seen from the problem under consi-
deration (Figs. 1 and 2) that the deviation from the classical results 1is
the greater, the smaller the dimensionless numbers ¥ and 4 and also that
the nonclassical results can be obtalned from the formulas of ordinary hydro-
mechanics (for the quantity of fluid discharged, the reslstance, the visco-
sity) by replacing the true dimension of the system 1 with the effective
dimension 1*= l + A , where A 1s determined by the characteristics of the
fluid.
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